April 15th, 2024 S. Kono

- 1. 崎野式のCは、せん断補強筋で拘束された主筋のみを対象とする. 添付の崎野論文図 1 では、CはC_iの最大値となっていますが、今回は平均値で計算しましょう. また、Dは横 補強筋の最小一辺長さですが、最も外側の横補強筋の短辺の芯芯間距離をとります.
- 2. 軸力 $0.20BD f_c'$ は, 全ケースとも $N = 0.20BD f_c' = 0.20 \cdot 350 \text{mm} \cdot 500 \text{mm} \cdot 24MP_c$ が作用しているとしてください. 比較のため, 軸力は全ケースで同じ軸力(kN)とします. かぶりがあってもなくても, 軸力は同じとします. 授業では外力としての軸力N = 0kNとして計算方法を紹介しましたが, 宿題ではN = 0.20BD f_c' となっています.
- 3. JCI 便覧 Kent&Park の $\varepsilon_{50u} = \frac{0.21+0.002f_{c'}}{f_{c'}-70}$ は、 f_{c} 'の単位が kgf/cm² です。Scott 論文の 式 (1.9) に $\varepsilon_{50u} = \frac{3+0.29f_{c}}{145f_{c}-1000}$ (ただし、 f_{c} 'は MPa)が載っています。拘束コンクリートを 対象とするときは、同じページの ε_{50h} と一緒に使ってください。また、拘束コンクリートのピーク点は、Scott 論文 p. 17 の修正 Kent&Park を用いてください。
- 4. せん断補強筋の体積比ρ_bを求めるには, せん断補強筋の体積と, 最も外側のせん断補強筋で囲まれている拘束コンクリートの比をとるのが妥当です.
- When you compute C in Sakino's confining effect for rectangular section, you should consider the only longitudinal rebars which have bent corners of shear reinforcement. Figure 1 in attached Sakino's paper shows that C is the minimum of C_i. However, please use the mean value of C_i in this homework. Length, D, is the shorter side length of the most external shear reinforcing bar.
- 2. Use axial load $N = 0.20BDf_c' = 0.20 \cdot 350mm \cdot 500mm \cdot 24MR_{\bullet}$ for all cases regardless of presence of cover concrete so that all cases have same axial load for easier comparison. In class, I taught a case for N = 0kN but you have $N = 0.20BDf_c'$ in Homework #2.
- 3. In Kent&Park's equation of $\varepsilon_{50u} = \frac{0.21+0.002f_{c'}}{f_{c'}-70}$ in JCI handbook, $f_{c'}$ is written in kgf/cm². Eq. (1.9) of Scott's thesis states $\varepsilon_{50u} = \frac{3+0.29f_{c'}}{145f_{c'}-1000}$ if $f_{c'}$ is in MPa. Another strain ε_{50h} should be used together for confined concrete. The peak point of confined concrete is computed with Modified Kent&Park model on p.17 of Scott thesis.
- 4. When you compute the volumetric ratio of shear rebars (ρ_b), concrete volume should be the confined region inside the most external shear rebars. So neglect the cover.

Note on
$$\varepsilon_{50u}$$
.

$$\varepsilon_{50u} = \frac{3+0.002f_{c'}}{f_{c'}-1000} (f_{c'} in psi) \quad (\text{Original Kent&Park equation})$$

$$\varepsilon_{50u} = \frac{3+0.002f_{c'}(/psi)(145 psi/MPa) - 1000}{f_{c'}(/psi)(145 psi/MPa) - 1000} = \frac{3+0.29f_{c'}}{145f_{c'}-1000} (f_{c'} in MPa)$$

$$\varepsilon_{50u} = \frac{3+0.002f_{c'}(/psi)(14.2 psi/(\frac{kgf}{cm2}))}{f_{c'}(/psi)(14.2 psi/(\frac{kgf}{cm2})) - 1000} = \frac{3+0.284f_{c'}}{14.2f_{c'}-1000} = \frac{0.21+0.002f_{c'}}{f_{c'}-70} (f_{c'} in \frac{kgf}{cm2})$$

2024 年非線形コンクリート特論(河野) Nonlinear Behavior of Concrete and Concrete Members(Dr. S. Kono) 東京工業大学 環境・社会理工学院 建築学系

非線形コンクリート特論 (Nonlinear Behavior of Concrete and Concrete Members)

2024.4.15 河野

提出期限:4月24日(水曜日)——4月15日&22日の授業内容から
 24日(水曜日)——4月15日&22日の授業内容から
 24日(水曜日)——4月15日&22日の授業内容から
 24MPaとして考察を進める.応力ーひずみ関係は、無拘束時も拘束時もPopovicsモデル(241頁,表 2.4)で表せるものとする.ただし、*ε_m*は 0.002、nは式(1)に変更する.

$$n = \frac{E_i}{E_i - \frac{F_{cf}}{\varepsilon_{cf}}}$$

(1)

ここで、Ei は初期弾性係数、F_{cf} は拘束等の影響を考慮したコンクリート強度、 \mathcal{E}_{cf} は F_{cf} に達したときの歪である. その他必要な定数は自分で決めてよいが、どういった値をどういった理由で使ったか述べること.

- Popovics モデルを用いて、無拘束コンクリートの応力度-歪関係をグラフに示せ. ただし、初期弾 性係数は、配布資料・表 2.5 の NewRC 式を用いる. (式中 600 は 60 の誤りです.) (追加: Kent&Park モデルを用いて、同じグラフ内に応力度 - 歪関係を示し、違いを説明せよ. ただし、 表 2.4 における Kent&Park モデルの単位は kgf/cm²なので、注意すること.)
- ② 図1の梁コア内の拘束コンクリートの応力度-盃関係を のそれぞれについて求めよ.ただし、拘束による強度上昇、強度時歪は崎野モデル(配布資料・表 2.7)を用い、Popovics モデルと組み合わせて計算を行う.計算結果を①で求めた無拘束コンクリートの応力---歪曲線と重ねて示せ.ただし、Eiは拘束後の強度から計算し、式(1)に代入してnを求めよ.(F_{cf}を求める 式中の P_b は、せん断補強筋の体積比です。フックなどせん断補強筋定着部の長さは無視してください.)(追加:Scott 論文 p. 17 の修正 Kent&Park モデルを用いて、同じグラフ内に拘束コンク リートの応力度-盃関係を示し、違いを説明せよ.最大強度とその時の歪は、同論文 Figure 1.8を 使用する.)
- ③ ①および②で求めたグラフから、初期弾性係数・ピーク時の応力と歪・ピーク後の下り曲線等の性 状が拘束によってどのように異なるか説明せよ.(追加:Popovics モデルと Kent&Park モデルの2 つの違いについても、議論せよ.数値を表に示すなどして、具体的に論じよ.)

レポートは,問題に直接回答する部分と,回答を裏付けるデータ(エクセルの表など)を加えて作成せ よ.途中の計算が追跡できない場合は,採点の対象となりません. **2024 年非線形⊐ンクリート特論(河野)** Nonlinear Behavior of Concrete and Concrete Members(Dr. S. Kono) 提出期限:5月??日(?曜日)

2. 梁 - 112 - 122 のモーメント・曲率関係を, 平面保持・完全付着を仮定した断面解析を用いて予測する. ただし, 梁には一定軸力 0.20BDf c に相当する軸圧縮力が作用していると仮定する. 鉄筋の応力-歪関係は完全弾塑性と仮定し, 鉄筋の実降伏強度を計算に用いる. コンクリートは, 問1①②の Popovics による応力-ひずみ関係を計算に用いる. ただし, Ac はかぶりを除外した柱コア部の全断面積である.

ここで,曲げ変形時の終局限界歪 \mathcal{E}_{cu} は<mark>横補強筋体積比 ρ_s </mark>,横補強筋降伏強度 f_{yh} ,横補強筋の引張強度時歪 $\mathcal{E}_{sm} = 0.1$,拘束により上昇したコンクリート強度 f_{cf} を用いて式(2)で表される.

$$\varepsilon_{cu} = 0.004 + \frac{1.4\rho_s f_{yh}\varepsilon_{sm}}{f_{cf}}$$
(2)

- ① 拘束を考慮する場合と考慮しない場合のコンクリートの応力 歪関係を用いて、軸力が作用する 場合について、モーメント・曲率関係を求め同じグラフ上に図示せよ、グラフ上には、ひび割れ点、 降伏点、最大耐力点、曲げ終局点を描きいれよ、曲げ終局点は、式(2)を用いる、ただし、拘束し ている場合はかぶり部分を解析から除外し、コアコンクリートの部分のみを対象として計算せよ、2 つのグラフの違いについて考察せよ。
- ② ①および②において,終局曲げモーメント時の危険断面におけるコンクリートの応力分布を1つのグラフ内に図示せよ. 歪分布についても,図示せよ. どのような違いがあるか,その違いはなぜ生じたかを説明せよ.
- ③ ①の3ケースについて,終局時の軸力と曲げモーメントの相関図を同じグラフに図示せよ.「釣り 合い破壊点」という言葉を用い、3ケースの違いについて議論せよ.
- ひび割れは、曲げ強度 $f_r \geq f_r = 0.56\sqrt{f'_c} (N/mm^2)$ として求めよ. 断面が拘束されていても、 引張側は拘束が効いていません. そこで、無拘束時の f'_c と無拘束時の E_c を使って f_r やその時の歪 ε_r を求めます.
- 降伏は,最外縁引張鉄筋の引張降伏で判断せよ.
- 曲率の単位が何かを考えて,回答しましょう.
- 変形角(%)は, 簡便的に曲率に塑性ヒンジ長さ(全柱せい)を乗じて求めよ. (簡易法であることを 理解して使いましょう.)

レポートは,問題に直接回答する部分に,回答を裏付けるデータ (エクセルの表など) を加えて作成せ よ. **2024 年非線形⊐ンクリート特論(河野)** Nonlinear Behavior of Concrete and Concrete Members(Dr. S. Kono) Due: April 24th (Wednesday)

1. Assume f'c is 24MPa for Specimens 2410 and 2004. Use Popovics' model (Table 2.4, p. 241) for stressstrain relation for both plain and confined concrete. Assume $\varepsilon_m = 0.002$ and Eq. (1) for n.

$$n = \frac{E_i}{E_i - \frac{F_{cf}}{\varepsilon_{cf}}} \tag{1}$$

Where E_i is the initial Young's modulus, F_{cf} is concrete strength of confined concrete, \mathcal{E}_{cf} is the strain when stress reaches F_{cf} . You may assume other necessary values by explaining reasons.

- Plot the stress –strain relation for plain concrete using Popovics' model. Use NewRC equation for the initial Young's modulus of concrete in Table 2.5 (Note that 600 is wrong but 60 is right in the equation.). Add stress-strain relation of Kent&Park model in the same plot. Explain difference(s) between two models. Note that Kent&Park model in Table 2.4 is expressed in kgf/cm².
- 2 Plot the stress strain relation for confined concrete of Specimens **burgers**. Use Sakino Model (Table 2.7) for strength and peak strain enhancement due to confinement. Show the plot on the same plot in ① so that they can be easily compared. In Popovics' model, compute Ei based on the confined concrete strength and *n* based on Eq. (1). (P_b in Sakino model is the volumetric ratio of shear reinforcement. It is not ordinary reinforcement index based on the area. Neglect anchorage length of shear reinforcement.) (Add stress-strain relation of Modified Kent&Park model in the same plot. Explain difference(s) between two models. Use Modified Kent&Park model on p. 17 of Scott thesis to obtain the peak point. Use Figure 1.8 to find the compressive strength and its strain for confined concrete in Scott's thesis.)
- ③ Make discussions on initial Young's modulus, peak stress and peak strain, stiffness of post-peak region for plain and confined concrete in Popovics' model and Kent&Park model. Discuss the difference with tabulated values for more concrete/specific discussion.

Show your results as well as the computing process. Add computing data like an excel sheet or a computing program.

2024 年非線形コンクリート特論(河野) Nonlinear Behavior of Concrete and Concrete Members(Dr. S. Kono) Due: May ??th (???)

2. Obtain moment – curvature relation for **bit in a section** with considering confining effect when the beam has 0.20BDf²c of axial load. Assume a plane section remains plane and longitudinal reinforcement has perfect bond. Reinforcement is elastic and perfectly plastic. Use the mechanical properties obtained in the material test for reinforcement. Use stress-strain relation of Popovics. Ac is the section area of a confined core.

The limit strain for flexure, \mathcal{E}_{cu} , is computed by Eq. (2)

$$\varepsilon_{cu} = 0.004 + \frac{1.4\rho_s f_{yh}\varepsilon_{sm}}{f_{cf}} \tag{2}$$

where ρ_s is the volume ratio of shear reinforcement, f_{yh} is the yield strength of shear reinforcement, \mathcal{E}_{sm} is strain at the tensile strength and assumed 0.1, f_{cf} is the enhanced concrete strength of confined concrete.

- ① Plot moment-curvature relations of **bit count obtain** assuming 1.) the section is completely unconfined and 2.) the core section is confined and cover concrete does not exist due to spalling. On the curve, show the points of cracking, yielding, peak, and the ultimate. Make comments.
- 2 Based on conditions of ①, plot both stress distribution and strain distribution at the critical section for the ultimate condition. Make comments.
- ③ Plot, in one figure, three interaction curves of axial force and moment capacity under the ultimate condition for ①. Make comments on three curves using terminology "Balanced failure point".
- Modulus of rupture, f_r , is, $f_r = 0.56\sqrt{f'_c}$ (N/mm^2) . The tensile region is not effectively confined even if the section has confining shear reinforcement. Find f_r and its strain (ε_r) using f'_c and E_c for unconfined concrete even for confined sections.
- Yield of beam is the point of tensile yield of the tensile reinforcement at the extreme end.
- Keep in mind that the curvature has unit.
- Drift ration (%) is computed as $D\varphi$ for simplicity where D is the total depth of the beam. (The further discussion is needed for this simple method.)

Show your results as well as the computing process. Add computing data like an excel sheet or a computing program.

2024 年非線形コンクリート特論(河野) Nonlinear Behavior of Concrete and Concrete Members(Dr. S. Kono)

Experimental Outline 1

Table 1 shows major variables of three RC beams. The variables were yield strength of transverse reinforcement. The details of reinforcement configuration are shown in Figure 1 and Figure 2.

2 Loading and measurement system

Figure 3 shows the loading system. The right concrete block is fixed to the reaction frame using prestressing bars and the left block is fixed to the steel loading beam. Shear force is applied with the central hydraulic jack by cyclically incrementing drift angle. Two vertical hydraulic jacks are controlled so that 1) the left concrete block remains parallel to the right block and 2) no external axial force exists during the loading.

Table 1 Specimen Specifications										
Specimen	h	D	d (mm)	L (mm)	M/QD	Shear reinforcement		Longitudinal bar		ե
	(mm)	(mm)				Configuration	рw (%)	Configuration	pt (%)	-u (mm)
NH25	350	450	369	2250	2.5	4-U9.0@125	0.59	4+3-D25	2.75	-
NN25	350	450	369	2250	2.5	4-D10@135	0.60	4+3-D25	2.75	-
CH25	350	450	369	2250	2.5	4-U9.0@125	0.59	4+3-D25	2.75	1120
※b:梁幅, D:梁せい, d:有効せい, L:スパン, M/OD:せん断スパン比, pw:せん断補強筋比, pt:引張鉄筋比, la:2 段目主筋カットオフ長さ										

L: beam clear span length(2000mm), D: total beam depth (500mm), L/(2D): Shear span to beam depth ratio, f'c: Nominal concrete strength, "4 \u03c6 7.1@100" means that four legs of round shear reinforcing bars with nominal diameter of 7.1mm are placed at every 100 mm spacing, p_w : shear reinforcement ratio. Use $f'_c = 24$ MPa in your homework

D10: f_{wv} =300MPa, U9: f_{wv} =1200MPa, D25: f_v =400MPa

(a) NH25 と CH25

(b) NN25

Figure 1. Arrangement of reinforcement (Unit:mm).

2024 年非線形コンクリート特論(河野) Nonlinear Behavior of Concrete and Concrete Members(Dr. S. Kono)

Figure 2. Cross section details of end span (Unit:mm)

Figure 3 Loading System (Unit: mm)

2024 年非線形コンクリート特論(河野) Nonlinear Behavior of Concrete and Concrete Members(Dr. S. Kono) コンクリート部材の曲げ解析

ここでは、軸力の設定がなされていません、軸力を考慮して課題を解いてください。